Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.353
Filtrar
1.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376991

RESUMO

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Assuntos
Bacteriófagos , Microbiologia Ambiental , Salmonella enterica , Antibacterianos/uso terapêutico , Bacteriófagos/isolamento & purificação , Sensibilidade Colateral a Medicamentos , Lipopolissacarídeos , Salmonella enterica/virologia , Terapia por Fagos , Infecções por Salmonella/terapia , Humanos
2.
Appl Environ Microbiol ; 90(2): e0183523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214516

RESUMO

Even though differences in methodology (e.g., sample volume and detection method) have been shown to affect observed microbial water quality, multiple sampling and laboratory protocols continue to be used for water quality monitoring. Research is needed to determine how these differences impact the comparability of findings to generate best management practices and the ability to perform meta-analyses. This study addresses this knowledge gap by compiling and analyzing a data set representing 2,429,990 unique data points on at least one microbial water quality target (e.g., Salmonella presence and Escherichia coli concentration). Variance partitioning analysis was used to quantify the variance in likelihood of detecting each pathogenic target that was uniquely and jointly attributable to non-methodological versus methodological factors. The strength of the association between microbial water quality and select methodological and non-methodological factors was quantified using conditional forest and regression analysis. Fecal indicator bacteria concentrations were more strongly associated with non-methodological factors than methodological factors based on conditional forest analysis. Variance partitioning analysis could not disentangle non-methodological and methodological signals for pathogenic Escherichia coli, Salmonella, and Listeria. This suggests our current perceptions of foodborne pathogen ecology in water systems are confounded by methodological differences between studies. For example, 31% of total variance in likelihood of Salmonella detection was explained by methodological and/or non-methodological factors, 18% was jointly attributable to both methodological and non-methodological factors. Only 13% of total variance was uniquely attributable to non-methodological factors for Salmonella, highlighting the need for standardization of methods for microbiological water quality testing for comparison across studies.IMPORTANCEThe microbial ecology of water is already complex, without the added complications of methodological differences between studies. This study highlights the difficulty in comparing water quality data from projects that used different sampling or laboratory methods. These findings have direct implications for end users as there is no clear way to generalize findings in order to characterize broad-scale ecological phenomenon and develop science-based guidance. To best support development of risk assessments and guidance for monitoring and managing waters, data collection and methods need to be standardized across studies. A minimum set of data attributes that all studies should collect and report in a standardized way is needed. Given the diversity of methods used within applied and environmental microbiology, similar studies are needed for other microbiology subfields to ensure that guidance and policy are based on a robust interpretation of the literature.


Assuntos
Escherichia coli , Listeria , Microbiologia Ambiental , Salmonella , Alimentos , Microbiologia de Alimentos , Inocuidade dos Alimentos
3.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216518

RESUMO

The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.


Assuntos
Microbiologia Ambiental , Ambientes Extremos , Resíduos Radioativos , Resíduos Radioativos/análise
4.
Microbiol Mol Biol Rev ; 87(4): e0012121, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047636

RESUMO

SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.


Assuntos
Ambiente Construído , Microbiologia Ambiental , Animais , Humanos
6.
N Engl J Med ; 389(25): 2355-2362, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118023

RESUMO

Melioidosis, caused by Burkholderia pseudomallei, is a rare but potentially fatal bacterial disease endemic to tropical and subtropical regions worldwide. It is typically acquired through contact with contaminated soil or fresh water. Before this investigation, B. pseudomallei was not known to have been isolated from the environment in the continental United States. Here, we report on three patients living in the same Mississippi Gulf Coast county who presented with melioidosis within a 3-year period. They were infected by the same Western Hemisphere B. pseudomallei strain that was discovered in three environmental samples collected from the property of one of the patients. These findings indicate local acquisition of melioidosis from the environment in the Mississippi Gulf Coast region.


Assuntos
Burkholderia pseudomallei , Microbiologia Ambiental , Melioidose , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Melioidose/epidemiologia , Melioidose/microbiologia , Estados Unidos/epidemiologia
10.
J Microbiol Methods ; 214: 106841, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832922

RESUMO

Quantification of the abundance and understanding of the dynamics of the microbial communities is essential to establish a basis for microbiome characterization. The conventional techniques used for the quantification of microbes are complicated and time-consuming. With scientific advancement, many techniques evolved and came into account. Among them, flow cytometry is a robust, high-throughput technique through which microbial dynamics, morphology, microbial distribution, physiological characteristics, and many more attributes can be studied in a high-throughput manner with comparatively less time and resources. Flow cytometry, when combined with other omics-based methods, offers a rapid and efficient platform to analyze and understand the composition of microbiome at the cellular level. The microbial diversity observed through flow cytometry will not be equivalent to that obtained by sequencing methods, but this integrated approach holds great potential for high throughput characterization of microbiomes. Flow cytometry is regarded as an established characterization tool in haematology, oncology, immunology, and medical microbiology research; however, its application in environmental microbiology is yet to be explored. This comprehensive review aims to delve into the diverse environmental applications of flow cytometry across various domains, including but not limited to bioremediation, landfills, anaerobic digestion, industrial bioprocesses, water quality regulation, and soil quality regulation. By conducting an in-depth analysis, this article seeks to shed light on the potential benefits and challenges associated with the utilization of flow cytometry in addressing environmental concerns.


Assuntos
Microbiota , Citometria de Fluxo/métodos , Microbiologia Ambiental , Análise de Sequência de DNA/métodos , Qualidade da Água
16.
Appl Environ Microbiol ; 89(7): e0042423, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310259

RESUMO

In our previous cross-sectional study, multiple species of Campylobacter were detected (88%) in stool samples from children (12 to 14 months of age) in rural eastern Ethiopia. This study assessed the temporal fecal carriage of Campylobacter in infants and identified putative reservoirs associated with these infections in infants from the same region. The prevalence and load of Campylobacter were determined using genus-specific real-time PCR. Stool samples from 106 infants (n = 1,073) were collected monthly from birth until 376 days of age (DOA). Human stool samples (mothers and siblings), livestock feces (cattle, chickens, goats, and sheep), and environmental samples (soil and drinking water) from the 106 households were collected twice per household (n = 1,644). Campylobacter was most prevalent in livestock feces (goats, 99%; sheep, 98%; cattle, 99%; chickens, 93%), followed by human stool samples (siblings, 91%; mothers, 83%; infants, 64%) and environmental samples (soil, 58%; drinking water, 43%). The prevalence of Campylobacter in infant stool samples significantly increased with age, from 30% at 27 DOA to 89% at 360 DOA (1% increase/day in the odds of being colonized) (P < 0.001). The Campylobacter load increased linearly (P < 0.001) with age from 2.95 logs at 25 DOA to 4.13 logs at 360 DOA. Within a household, the Campylobacter load in infant stool samples was positively correlated with the load in mother stool samples (r2 = 0.18) and soil collected inside the house (r2 = 0.36), which were in turn both correlated with Campylobacter loads in chicken and cattle feces (0.60 < r2 < 0.63) (P < 0.01). In conclusion, a high proportion of infants are infected with Campylobacter in eastern Ethiopia, and contact with the mother and contaminated soil may be associated with early infections. IMPORTANCE A high Campylobacter prevalence during early childhood has been associated with environmental enteric dysfunction (EED) and stunting, especially in low-resource settings. Our previous study demonstrated that Campylobacter was frequently found (88%) in children from eastern Ethiopia; however, little is known about potential Campylobacter reservoirs and transmission pathways leading to infection of infants by Campylobacter during early growth. In the longitudinal study presented here, Campylobacter was frequently detected in infants within the 106 surveyed households from eastern Ethiopia, and the prevalence was age dependent. Furthermore, preliminary analyses highlighted the potential role of the mother, soil, and livestock in the transmission of Campylobacter to the infant. Further work will explore the species and genetic composition of Campylobacter in infants and putative reservoirs using PCR and whole-genome and metagenomic sequencing. The findings from these studies can lead to the development of interventions to minimize the risk of transmission of Campylobacter to infants and, potentially, EED and stunting.


Assuntos
Infecções por Campylobacter , Campylobacter , Fezes , Humanos , Animais , Campylobacter/genética , Campylobacter/isolamento & purificação , Fezes/microbiologia , Gado/microbiologia , Etiópia , Recém-Nascido , Lactente , Prevalência , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Estudos Longitudinais , População Rural , Microbiologia Ambiental , Carga Bacteriana
17.
Microbiome ; 11(1): 129, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291673

RESUMO

BACKGROUND: Humans emit approximately 30 million microbial cells per hour into their immediate vicinity. However, sampling of aerosolized microbial taxa (aerobiome) remains largely uncharacterized due to the complexity and limitations of sampling techniques, which are highly susceptible to low biomass and rapid sample degradation. Recently, there has been an interest in developing technology that collects naturally occurring water from the atmosphere, even within the built environment. Here, we analyze the feasibility of indoor aerosol condensation collection as a method to capture and analyze the aerobiome. METHODS: Aerosols were collected via condensation or active impingement in a laboratory setting over the course of 8 h. Microbial DNA was extracted from collected samples and sequenced (16S rRNA) to analyze microbial diversity and community composition. Dimensional reduction and multivariate statistics were employed to identify significant (p < 0.05) differences in relative abundances of specific microbial taxa observed between the two sampling platforms. RESULTS: Aerosol condensation capture is highly efficient with a yield greater than 95% when compared to expected values. Compared to air impingement, aerosol condensation showed no significant difference (ANOVA, p > 0.05) in microbial diversity. Among identified taxa, Streptophyta and Pseudomonadales comprised approximately 70% of the microbial community composition. CONCLUSION: The results suggest that condensation of atmospheric humidity is a suitable method for the capture of airborne microbial taxa reflected by microbial community similarity between devices. Future investigation of aerosol condensation may provide insight into the efficacy and viability of this new tool to investigate airborne microorganisms. IMPORTANCE: On average, humans shed approximately 30 million microbial cells each hour into their immediate environment making humans the primary contributor to shaping the microbiome found within the built environment. In addition, recent events have highlighted the importance of understanding how microorganisms within the built environment are aerosolized and dispersed, but more importantly, the lack in development of technology that is capable of actively sampling the ever-changing aerosolized microbiome, i.e., aerobiome. This research highlights the capability of sampling the aerobiome by taking advantage of naturally occurring atmospheric humidity. Our novel approach reproduces the biological content in the atmosphere and can provide insight into the environmental microbiology of indoor spaces. Video Abstract.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Estudos de Viabilidade , Microbiologia Ambiental , Aerossóis , Microbiologia do Ar
18.
Environ Sci Pollut Res Int ; 30(27): 69711-69726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150789

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) with their carcinogenic, teratogenic, and mutagenic effects can cause great damage to the ecosystem and public health when present in water. With bioremediation, PAH contamination in water environment can be greatly reduced in an eco-friendly manner. It has thus become the research focus for many environmental scientists. In this study, a bibliometric analysis on three-decade (1990-2022) development of PAH bioremediation in water environment was conducted from temporal and spatial dimensions using CiteSpace. A total of 2480 publications, obtained from Web of Science core collection database, were used to explore the basic characteristics, hotspots, and prospects of the research area. The results showed that (1) bioremediation/biodegradation of PAHs in water environment has been getting researchers' attention since 1990, and is gaining even more traction as time goes on. (2) In terms of countries, China and the USA were the major contributors in this research area, while at the institutional level, the Chinese Academy of Sciences has produced the most research results. However, international cooperation across regions was lacking in the field. (3) Environment Science and Technology, Chemosphere, Applied and Environment Microbiology, Journal of Hazardous Materials, and Environment Pollution were the 5 most cited journals in this field. (4) There were three major stages the field has gone through, each with distinct research hotspots, including initial stage (1990-1994), mechanism investigation (1995-2000), and application exploration (2001-2010; 2011-2022). Finally, research perspectives were proposed, covering three directions, namely, bioavailability, immobilization, and viable but nonculturable (VBNC) bacteria.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Água , Biodegradação Ambiental , Água/análise , Ecossistema , Microbiologia Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Bibliometria
20.
J Clin Virol ; 164: 105497, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37253299

RESUMO

BACKGROUND: Rotavirus group A (RVA) is a causative agent of acute gastroenteritis among young children worldwide, despite the global expansion of rotavirus vaccination. In Korea, although the prevalence of RVA has been reduced among young children owing to vaccination, nosocomial infections still occur among neonates. OBJECTIVES: The aim of this study was to investigate the molecular epidemiology of RVA strains associated with several neonatal outbreaks in Seoul from 2017 to 2020. STUDY DESIGN: Clinical and environmental samples were collected and screened for the presence of RVA using ELISA and PCR targeting VP6, respectively. RVA-positive strains were genotyped via RT-PCR and subsequent sequencing of VP4 and VP7 and were phylogenetically compared with RVA strains from other countries. RESULTS: During 2017-2020, a total of 15 RVA outbreaks occurred at neonatal facilities (six in hospital neonatal wards and nine in postpartum care centers) in Seoul, and only two RVA genotypes were detected: G4P[6] and G8P[6]. G8P[6] emerged in Seoul November 2018 and immediately became the predominant genotype among neonates, at least up to 2020. Phylogenetic analysis revealed that the G8P[6] genotype in this study was closely related to G8P[6] strains first identified in Korea in 2017, but differed from G8P[6] strains detected in Africa. CONCLUSIONS: A novel G8P[6] genotype of RVA strains has emerged and caused outbreaks among neonates in Seoul. Continued surveillance for circulating RVA genotypes is imperative to monitor genotype changes and their potential risks to public health.


Assuntos
Infecção Hospitalar , Surtos de Doenças , Epidemiologia Molecular , Filogenia , Infecções por Rotavirus , Rotavirus , Feminino , Humanos , Recém-Nascido , Fezes/virologia , Genótipo , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Seul/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/virologia , Proteínas do Capsídeo/genética , Microbiologia Ambiental , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...